
Algorithm Design and Analysis 2018

1

Searching methods

Def: Searching operation is the process of finding an item in the array

that meets some specified criterion.

Some common searching methods

1. Linear Search (Sequential Search) (in an unordered array)

2. Binary Search

1. Linear Search

 Look at each item in the array in turn, and check whether that item is

the one you are looking for.

 If so, the search is finished and the method returns it’s index.

 If it is not found, then the method returns -1.

 This method is benefit if nothing is known about the order of the items

in the array.

2. Binary Search

Is a method for searching for a given item in a sorted array.

0 4 Ub

1 7

2 16

3 20 M

4 37

5 38

6 43 Lb

 Variables Lb and Ub keep track of the lower bound and upper bound of

the array, respectively.

 Begin searching by examining the middle element of the array.

 If the key we are searching for is equal to the middle element then

returns M, else if it is less than the middle element, then set Ub to (M –

1). Else set Lb to (M + 1).

 In this way, each iteration halves the size of the array to be searched.

This is a powerful method. Given an array of 1023 elements, we can

narrow the search to 511 elements in one comparison. After another

comparison, and we’re looking at only 255 elements. In fact, we can search

the entire array in only 10 comparisons.

Algorithm Design and Analysis 2018

2

Ex: search for 87 in the array below:

0 1 2 3 4 5 6 7 8 9 10 11 12

4 16 22 23 37 54 65 67 68 73 82 87 89

LP M UP

0 1 2 3 4 5 6 7 8 9 10 11 12

4 16 22 23 37 54 65 67 68 73 82 87 89

 LP M UP

0 1 2 3 4 5 6 7 8 9 10 11 12

4 16 22 23 37 54 65 67 68 73 82 87 89

 LP M UP

algorithm

(data structure)

worst-case cost

(after N inserts)

average-case cost

(after N random inserts)

efficiently

support ordered

operations?

 search insert search hit insert
sequential search
(unordered linked

list)

N N N/2 N no

binary search
(ordered array)

Log N 2N Log N N yes

Note: log2 N : (x such that 2x = N)

 Linear List

An array is a very useful data structure provided in programming languages.

However, it has at least two limitations: memory or time.

 It wastes memory by allocating an array that is large enough to store what you

estimate to be maximum number of elements a list will ever hold.

 The insertion and deletion operations require shifting elements back and forth

within the array.

Sequential allocation

(Stack, Queue, CQueue)

Linked allocation

Algorithm Design and Analysis 2018

3

So, arrays had certain disadvantages as data storage structures. In an unordered

array, searching is slow, whereas in an ordered array, insertion is slow. In both kinds of

arrays deletion is slow. Also, the size of an array can't be changed after it's created.

This limitation can be overcome by using linked structure. A linked structure is

collection of nodes storing data and links to other nodes.

In this way, nodes can be located anywhere in memory, and passing from one node

of the linked structure to another is accomplished by storing the addresses of other nodes

in the linked structure.

Link list: is a data structure composed of nodes, each node hold some information and

a pointer to another node in the list.

Linear List and Linked Allocation:-

Single Link Liner List (S.L.L.L): (one-way chain)

First: is a pointer var. to denote to the first node in the list.

Typical node

A node includes 2 data members: info and next. The info member is used to store

information. The next member is used to link together nodes to form a linked list.

class Link

 {

 public int iData; // data

 public double dData; // data

 public Link next; // reference to next link

 }

 B 2000

2013

 R 2010

2000

 F 2005

2010

 H 2001

2005

 Q

2001

First

Contain the address to the next node

Info Link or next

Information

Algorithm Design and Analysis 2018

4

 note that The next field of type Link is only a reference to another link, not an

object.

 A reference is a number that refers to an object. It's the object's address in the

computer's memory

To create an object you must always use new:

 Link someLink = new Link();

Ex:

 class LinkList

 {

 private Link first; // reference to first link on list

 // --

 public void LinkList() // constructor

 {

 first = null; // no items on list yet

 }

 // --

 public boolean isEmpty() // true if list is empty

 {

 return (first==null);

 }

 // --

 ... // other methods go here

 }

The insertFirst() Method

The insertFirst() method of LinkList inserts a new link at the beginning of the list

by using the data passed as arguments. To insert the new link, we need only set the next

field in the newly created link to point to the old first link, and then change first so it

points to the newly created link.

 Link newLink = new Link(id, dd); // make new link

 newLink.next = first; // newLink --> old first

 first = newLink; // first --> newLink

Algorithm Design and Analysis 2018

5

The deleteFirst() Method

The deleteFirst() method is the reverse of insertFirst(). It disconnects the first link

by rerouting first to point to the second link. This second link is found by looking at the

next field in the first link.

 // (assumes list not empty)

 Link temp = first; // save reference to link

 first = first.next; // delete it: first-->old next

 return temp; // return deleted link

The displayList() Method

To display the list, you start at first and follow the chain of references from link to

link. A variable current points to (or technically refers to) each link in turn. It starts off

pointing to first, which holds a reference to the first link. The statement

 current = current.next;

changes current to point to the next link.

 System.out.print ("List (first-->last): ");

 Link current = first; // start at beginning of list

 while (current != null) // until end of list,

 { current.displayLink(); // print data

 current = current.next; // move to next link

 }

 System.out.println("");

First

Deleted node

first

new Link

Algorithm Design and Analysis 2018

6

To delete a given key:

 // delete link with given key // (assumes non-empty list)

 Link current = first; // search for link

 Link previous = first;

 while (current.iData != key)

 {

 if (current.next == null)

 return null; // didn't find it

 else

 {

 previous = current; // go to next link

 current = current.next;

 }

 } // found it

 if (current == first) // if first link,

 first = first.next; // change first

 else // otherwise,

 previous.next = current.next; // bypass it

Now try to

1) Add a node at the tail of the list,

2) Change the data for a specific node,

3) Display the list.

4) Delete a node at the tail of the list.

5) Count the nodes in any list.

6) A Recursive function to count number of nodes in any list.

Of course you can insert a new link at the end of an ordinary single-ended list by

iterating through the entire list until you reach the end, but this is inefficient.

Double-Ended Lists

A double-ended list is similar to an ordinary linked list, but it has one additional

feature: a reference to the last link as well as to the first. Figure below shows what this

looks like.

Algorithm Design and Analysis 2018

7

The reference to the last link permits you to insert a new link directly at the end

of the list as well as at the beginning.

Linked-List Efficiency
Insertion and deletion at the beginning of a linked list are very fast. They involve

changing only one or two references, which takes O(1) time.

Finding, deleting, or insertion next to a specific item requires searching

through, on the average, half the items in the list. This requires O(N) comparisons. An

array is also O(N) for these operations, but the linked list is nevertheless faster because

nothing needs to be moved when an item is inserted or deleted.

Another important advantage of linked lists over arrays is that the linked list uses

exactly as much memory as it needs, and can expand to fill all of the available memory.

The size of an array is fixed when it's created; this usually leads to inefficiency because

the array is too large, or to running out of room because the array is too small. Vectors,

which are expandable arrays, may solve this problem to some extent, but they usually

expand in fixed-sized increments (such as doubling the size of the array whenever it's

about to overflow). This is still not as efficient a use of memory as a linked list.

Double linked linear list (D.L.L.L.)

A potential problem with ordinary linked lists is that it's difficult to traverse

backward along the list.

The doubly linked list provides this capability. It allows you to traverse backward

as well as forward through the list. The secret is that each link has two references to other

links instead of one. The first is to the next link, as in ordinary lists. The second is to the

previous link. This is shown in Figure below

first
 Last

/ 2001 2005 2013 2001 /

 2005 2001 2013

 2007

The beginning of the specification for the Link class in a doubly linked list looks

like this:

Lptr info Rptr

address to the

predecessor node
address to the

sucessor node

Left most node Right most node

Algorithm Design and Analysis 2018

8

class Link

{

 public double dData; // data item

 public Link next; // next link in list

 public link previous; // previous link in list

 ...

}

The downside of doubly linked lists is that every time you insert or delete a link

you must deal with 4 links instead of 2; 2 attachments to the previous link and 2

attachments to the following one.

Traversal

Two display methods demonstrate traversal of a doubly linked list. The

displayForward() method is the same as in ordinary linked lists. The displayBackward()

method is similar, but starts at the last element in the list and proceeds toward the start

of the list, going to each element's previous field:

Link current = last; // start at end

while (current != null) // until start of list,

 current = current.previous; // move to previous link

1. Insertion in D.L.L.L.

a) Insert at the left most node.

 R

 L

 if (first = 0) {

 first = last = newLink;

 else

 first.prev = newLink; // newlink <-- old first

 newLink.next = first; // newLink --> old first

 first = newLink; // first --> newLink

 b) Insert at the right most node.

 /

/

/

new node

Algorithm Design and Analysis 2018

9

L

 R

 if (tail != 0) {

 newlink.prev = last;

 last.next = newlink ;

 last = newlink;

 }

 else

 first = last = newLink;

c) Insert in the middle of D.L.L.L. // insert after a node

3. Deletion in D.L.L.L.

a) Delete from the right most node.

 if (first= last) { // if only one node in the list;

 first = last = 0;

 }

 else {

 last = last.prev;

 last.next= 0;

 }

/ /

/

new node

Algorithm Design and Analysis 2018

10

b) Delete from the left most node.

 first = first.next;

 first.prev = 0

c) Delete from the Middle.

current. prev.next = current.next;

current.next.prev = current.prev;

D.L.L.L. as a queue:-

 Front(F) Rare(R)

1. Create same as create to any D.L.L.L.

2. Insertion (insert at the right most location)

3. Deletion (delete the left most node)

Non linear Data Structure

 / /

Algorithm Design and Analysis 2018

11

1. Tree

2. Graph

3. Network

Tree (Branching Structure)

level 0

 (B, C, Z are

 sublings brothers)

 General tree (concept)

notes

 (H, L, M are the children of B)

 A-B-M is path (descending) /* descending from top to down i.e.

from root to leaves */

 Climbing. Is a bottom up approach, e.g., a program combines subprograms

in one unit.
 Two nodes are siblings if they have the same parent.
 Ancestor. A node's parent is its first ancestor, the parent of the parent is the

next ancestor, and so on. The root is an ancestor of each other node.
 (70) is a leave node because it has no sons, whatever its level, it has no successor

Same predecessor or

(twins) or (brothers)

Root

Subdir

Progn prog2 prog1

Leave node

A

B C Z

Root node

H L M

4 levels
0, 1, 2, 3
1, 2, 3, 4

15

3 4 51

Root : is a pointer var,

to the top most node

70

Algorithm Design and Analysis 2018

12

Binary tree

A binary tree is a finite set of "nodes". The set might be empty (no nodes, which is

called empty tree). But if the set is not empty, it follows these rules:

1. There is one special node called the root.

2. Each node may be associated with up to two other different nodes, called its

left child and its right child. If a node c is the child of another node p, then we

say that "p is c's parent".

3. Each node, except the root, has exactly one parent; the root has no parent.

Application of binary tree:-

To represent any arithmetic expression

Tree traversals
Means visit all the nodes in a tree only once.

There are 3 common ways for traversals of binary tree: in-order traversal, pre-order

traversal, and post-order traversal.

1- Inorder traversal

a. left subtree

b. root

c. right subtree

B A C

a + b (infix expression)

2- Preorder traversal

Sub trees

+

a b

+

a+b A

 B C
traverse

Algorithm Design and Analysis 2018

13

a. Root

b. left subtree

c. right subtree

A B C

+ a b (prefix expression)

3- Postorder traversal

a. left subtree

b. right subtree

c. root

B C A

a b + (suffix expression)

Note that there are another methods to traverse general tree, a tree if we convert left by

right.

1- Convert inorder

a. right subtree

b. root

c. left subtree

2- Convert preorder

a. Root

b. right subtree

c. left subtree

3- Convert postorder

a. right subtree

b. left subtree

c. root

Example:

R B Z H A M C L K (inorder)

A B R Z H C M L K (preorder)

 A

 B C

 K

 Z R M L

 H

Algorithm Design and Analysis 2018

14

R H Z B M K L C A (postorder)

Example2:

 a + b * c

Example3:

(a + b) * c

Non Linear Data Structure (Tree):

General Tree Binary Tree

 Traversal

1. Inorder traversal

H B M Z Q L A N F R K

2. Preorder traversal

A B H L Z M Q F N K R

3. Postorder traversal

 H M Q Z L B N R K F A

root

 +

 a *

 b c

1. a + b * c

2. a b c * +

3. + a * b c

 +

 a

 *

 b

 c

1. * + a b c

2. a b + c *

 Left sub

trees

 Left sub

trees

 Right

sub trees

 Right

sub trees

 A

 B F

 H L

 Z

 M Q

 N K

 R

root

Algorithm Design and Analysis 2018

15

Application of binary tree:-

1. Using BT to convert any infix exp. into suffix and prefix form, such trees called

expression trees.

Example

 A + B * C – Z / H + W ^ 2

 +

-

+

 * / ^

A B C Z H W 2

Expression Tree

Example2

 (A + B) * C – (Z / (H + W ^ 2))

 -

 * /

 + C Z +

A B H ^

 W 2

How to draw a mathematical expression tree

 Every subtree has a root (operation) and its children (operands)

((A + 2  5) AND (F > Z / H)) OR (K < 10)

 OR

 AND <

  > K 10

 + 5 F /

 A 2 Z H

Traversal

1. Inorder traversal

A + B * C - Z / H + W ^ 2

2. Preorder traversal

+ - + A * B C / Z H ^ W 2

3. Postorder traversal

A B C * + Z H / - W 2 ^ +

Traversal

1. Prefix form (preorder)

- * + A B C / Z + H ^ W 2

2. Suffix form (postorder)

 A B + C * Z H W 2 ^ + / -

4. Infix (inorder)

A + 2  5 AND F > Z / H OR K < 10

5. Preorder

 OR AND  + A 2 5 > F / Z H < K 10
6. Postorder

A 2 + 5  F Z H / > AND K 10 < OR

Algorithm Design and Analysis 2018

16

2. Using BT to find all the duplicated in any given values by built a Binary Search

Tree.

Binary Search Tree (BST)

 9, 12, 5, 7, 2, 14, 18, 10, 8, 6

 9

 5 12 insert (7)

 insert (7)

 2 7 10 14 insert (4)

 insert (15)

 4 6 8 9 18 insert (9)

insert (14)

 7 15 18 insert (18)

 insert (22)

 7 14 22

3. Obtain sorted data by building a BST then traverse the tree using inorder

traversal.

notes

 if we want to insert duplicated data to the tree, then the duplicated means

greater than operation.

 Another way to insert duplicate data, by put an integer number denoting

the times any data are duplicated.

 2

 3

root

9 1

5 1 12 1

2 1 7 1

Occurance field

Algorithm Design and Analysis 2018

17

Representation of Binary Tree in a Computer Memory:
1. Sequential allocation (store a dimension greater than or equal to the tree size)

2. Linked allocation

 In sequential allocation, if we have 5 levels, the no. of locations (array size) = 25-

1, but this will occupy spaces without using it.

Ex.,

Ex2, A

 B C

 M Z L

 H Q

 K

 If n is a no. of level then the array size = 2n-1

o 4-0+1 5 levels if root in level zero

o 5-1+1 5 levels if root in level one.

Ex3: (A + B * C – Z / H) / F

 /

 - F

 + /

 A * Z H

 B C

If we have 5 levels,

Then there is 31 location

and 8 locations are used only

A B C M Z L H Q K

1 2 3 4 5 7 10 11 20 31

 If the parents in location P, then

left son in location 2P and

right son in location 2P+1

/ - F + / A * Z H ……. B C

1 2 3 4 5 8 9 10 11 18 19 31

 In sequential allocation, the returning to

the root is easy.

 While in linked allocation, it is hard to

return to the root, also there is increasing

in reserving space since there is a need to

reserve the left and right pointers.

Algorithm Design and Analysis 2018

18

Rebalancing
The tree is called balanced if different subtrees below a node are guaranteed to

have nearby the same height.

This will reduce the reserved array size, the searching time since it reduces the

level for the above example from 5 to level 3.

Create a Binary Search Tree

(* function CreateTree *)

void CreateTree(LRp *Ptr)

{ LRp Root;

 CreateNode(&Root);

 *Ptr = Root;

}

void CreateNode(LRp *Ptr)

{

 po=(Node *)malloc(sizeof(Node));

 if(po != NULL)

 { poinfo = x; poLptr = NULL;

 poRptr = NULL; }

 *Ptr=po;

}

Algorithm Rinsert(Root, Node)

(* This algorithm to insert a new node to any BST its Root given by a pointer variable

Root *)

if (currentinfo < (*Root) info)

 if ((*Root) Lptr == NULL)

 (*Root) Lptr = current;

 else

 Rinsert(&(*Root) Lptr, ¤t);

else

 if (currentinfo > (*Root)info) // insert right subtree

 if ((*Root)Rptr == NULL)

 (*Root)Rptr = current;

 else

 Rinsert(&(*Root)Rptr, ¤t);

 else
 { cout<< "the no. is found";

 (*Root)occ=(*Root)occ+1;

 }

//(* This function to count no. of nodes in any given BT its root R *)

int count(LRp R)

{

 if (R == NULL) co=0;

 else co = 1 + count(R->Lptr) + count(R->Rptr);

 return (co);

}

Actual parameter

 Root=2015

/ 8 /

Algorithm Design and Analysis 2018

19

 A

(* 1 + 1 + 1 + 0 + 0 + 1 + 1 + 0 + 0 + 1 + 0 + 0

 B C A B D E H K

 D E F + 1 + 0 + 1 + 0 + 0 *)

 C F

 H K

Deletion in a Binary Tree

There are 3 cases to consider the deletion operation

1. If the deleted node has no sons (it is a leaf)

 17

 12 20

 11 14 18 25

PT (Parent of T)

 16 23

 24 T

The deleted node called T

right

PTRptr = NULL

free(T) (* Return T to the avail *)

left

PTLptr = NULL

free(T) (* Return T to the avail *)

2. If the deleted node has only one subtree left or right then its son can be moved

up to take its place.

Algorithm Design and Analysis 2018

20

2.a

 PTLptr = TRptr
 17

 12 20

 11 14 18 28 PT (Parent of T)

 16 24 T

 28
 26

 26
25 27

 25 27

2.b 2.c

 PTRptr = TRptr PTLptr = TLptr

 17 B

 12 20 C

 11 14 18 28 R H

 T

 16 24 Z T

 26 D

 25 27 F Q

3. If the deleted node has 2 subtrees, then its inorder successor must take its place.

3.a

 6 6

 2 24 PT 2 24

 1 3 18 30 1 3 19 30

 T 17 22 PS 17 22

 19 23 20 23

S(Successor)
 20

 21

 21

3.b

PSLptr = S Rptr

PTLptr = S

SLptr = TLptr

SRptr = TRptr

Algorithm Design and Analysis 2018

21

 6 6

 2 30 PT 2 30

 1 3 18 35 1 3 20 35

 T 17 25 17 25

 22 27 22

S(Successor)
20 23 PS 23

 24 24

4. If the deleted node is the root

4.a

Root

4.b

 Root
 6

 8

 7 10

 9 12

4.c

 T 6

 Root

 2 24

 1 3 18 30

 17 22

 PS 11 19 23

 S 8 14 20

 21

4.d

PSLptr = NULL

PTLptr = S

SLptr = TLptr

SRptr = TRptr

/ 6 /

Root = RootRptr

PSLptr = SRptr

SLptr = TLptr

SRptr = TRptr
Root = S

Algorithm Design and Analysis 2018

22

 T 6

 Root

 2 24

 1 3 18 30

 PS 17 22

 S 11 19 23

 14 20

 21

Height of Tree

Dynamic tree

int height (LRp Root)

{
 if (Root ==NULL)

 Height=0;

 else

 height = 1 + Max(height (RootLptr), height (RootRptr));

}

int Max (int A, int B)

{
 if A>B
 return(A);

 else

 return (B);

}

Static Tree

If the tree as an array, then we takes the last occupied position; we start from

the end of the array backward to the first element its value not NULL.

In dynamic tree, try to printout the path as well as its length.

Tree Sort

PSLptr = SRptr

SLptr = TLptr

SRptr = TRptr
Root = S

Algorithm Design and Analysis 2018

23

Full binary trees

 A binary tree is called full when every leaf has the same depth and every nonleaf

has two children.

Complete binary tree

 A tree with full level before starting the next level

Not complete complete full and complete

Max heap structure: 50

 When the father is greater than his sons.

 The greatest value in the root. 40 30

 Complete binary tree.

 Every path is in descending order. 20 10 15 25

 5 12 7 3

Tree sort
Two sorting methods which are based on a tree representation of a given table of

data.

1. The straight forward binary search tree (built BST then the

inorder traversal  ascending order

convert inorder  descending).

2. The heap sort which involve a complete binary tree in much more complex

structure called Heap structure.

A Heap is a binary tree where entries of the nodes can be compared with the less-than

operator of a strict weak ordering; in addition, these two rules are followed:

1. The entry contained by the node is never less than the entries of the node's children.

2. The tree is a complete binary tree, so that every level except the deepest must contain

as many nodes as possible; and at the deepest level, all the nodes are as far left as

possible.

structure is a complete binary tree with some of right most leaves removed.

A General Heap represent a table of data satisfied the following properties:

1. The Max value is in the Root (if Max Heap).

2. Each parent is greater than its children.

3. The path from the Root to any leaf node is sorted path.

The Heap sort algorithm includes two steps:

Algorithm Design and Analysis 2018

24

1. Construct the Heap.

2. Sort the data.

Ex:

 Use the following data to construct a Heap structure, and then use a Heap sort

algorithm.

 42, 23, 74, 11, 65, 58, 94, 36, 99, 87

 94

 94 74

 58

 36

 11

 99

 94

 99

65 87

99

36 23

 42

 42

 23 74

 74

 23 42

 74

 23 42

 11 65

 74

 65 42

 11 23 58

 74

 65 58

 11 23 42

 74

 65 58

 11 23 42 94

 94

 65 74

 11 23 42 58

 36

 94

 65 74

 36 23 42 58

 11 99

 99

 94 74

 65 23 42 58

 11 36 87

 99

 94 74

Algorithm Design and Analysis 2018

25

Removing an entry from a Heap

When an entry is removed from a priority queue, we must always remove the entry

with the highest priority – the entry that stands "on top of the heap".

If the root entry is the only entry in the heap, then there is no more work to do except

to decrement the member variable that is keeping track of the size of the heap.

Otherwise, the last entry in the last level has been moved to the root; the structure is

now complete tree, but it is not heap because the root is less than its children. To fix this,

we can swap the root with its larger child. The structure is not yet a heap, so again swap

the out-of-place node with its larger child, and so on until we reach the leaf, then we will

stop, and the structure is a heap.

 94 23 36 87

 87 23 65 36

 23 36

 11 74 11 65

 11 58 11 36

 11 11

 74

 65

23 36 11 58 42 87 65 74 94 99

 99

 94 74

 65 87 42 58

 11 36 23

 94

 87 74

 65 23 42 58

 11 36

 87

 65 74

 36 23 42 58

 11

 65 58

 36 23 42 11

99

94 99

Algorithm Design and Analysis 2018

26

 42 58 23 42 11 36

 42 23 11

 23 11

H.W: Consider the last example to construct Min Heap and sort a given data in ascending

order.

Note:
- Its also possible to define ascending Heap (Min Heap) as almost a complete

binary tree such that the content of each node is greater than or equal to its father.

- In Min Heap, the root contains the smallest value and any path from the root to

a leaf node is on ascending order.

 36 58

 11 23 42

 65

 36 42

 11 23

 58

 36 23

 11

 42

 11 23

 36

 11

 23

 11

87 94 99

74 87 94 99

65 74 87 94 99

58 65 74 87 94 99

42 58 65 74 87 94 99

36 42 58 65 74 87 94 99

23 36 42 58 65 74 87 94 99

11 23 36 42 58 65 74 87 94 99

Algorithm Design and Analysis 2018

27

Threading in a Binary Tree dummy node

8 NIL pointer

7 node

In Postorder : Z B L M H C A In Inorder traversal: Z B A N H M C

 Thread: is an empty pointer which became a pointer to the successor or

predecessor in an inorder traverse.

 It is difficult to recognize between the original pointers or thread pointers, so

there is a waste of space because there must be 2 additional fields to indicate if

the node is normal or thread.

If we look carefully at the linked representation of any binary tree, we note that

there is (n+1) NIL links for a binary tree contains (n) nodes. This waste of storage can

be used in the reformulation of the previous representation of binary tree.

The empty link will be replaced by threads: which is a pointer to the successor or

predecessor nodes in a tree.

If the right pointer is nil, then it will be replaced by a pointer to the successor node

in any ordered used,

and if the left pointer is NIL, it will be replaced by a pointer to the predecessor

node in any ordered used.

In the memory representation, we must be able to distinguish between threads and

original pointers. This is done by adding a Boolean fields to the record, so the node

defined as:

struct Node

{

 B C

 Z

 M

 H

 A

 A

/ C / B

 H / Z /

/ M / / L /

 L

Algorithm Design and Analysis 2018

28

 info any type

 boolean Lthread, Rthread

 struct Node *Lptr, *Rptr;

};

 typedef struct Node *Lp;

Logically

 Physically (in memory)

H.W: Given the following postorder and inorder traversal of a binary tree. Draw the

tree.

 Postorder: A B C D E F I K J G H

 Inorder: C B A E D F H I G K J

Straight Binary Tree

If every non leaf node in a binary tree has non empty left and right subtree, the tree

is termed as straightly binary tree.

For example:

interial

node

 1

 4

 2 3

 A straight BT with n leafs contain 2n-1 nodes.

Lptr Lthr Info Rthr Rptr

 1 or 0 1 or 0

info Lthr Rthr Lptr Rptr

Interial

node

interial node

at least it has one son

Straight

binary tree

Algorithm Design and Analysis 2018

29

Different types of BT:
1. Binary Search Tree.

2. Expression Tree

3. Complete Binary Tree [Static Representation].

4. Heap Structure [Heap BT]

5. Thread BT.

6. Straightly Binary Tree.

 Full and complete

 but not heap

Logical deletion: we put a tag field pointing if this node is deleted or not.

Physical deletion: the normal deletion by pointers.

Brunch: the connection between 2 nodes.

Spling: It is the node that came from the same father.

non heap

 non-complete

 non-full

 non-straightly

Ex: Use BST to sort the following list of names in lexicographic order.

 Norman, Roger, John, Bill, Leo, Paul, Ken and Mourice

Complete and straight Complete and not straight

 52 34

 25 28 36 19

 66

Algorithm Design and Analysis 2018

30

 Norman

 X2

 Join Roger

 X4

Bill Leo Paul

 X221

 Ken Mourice

If there are small and capital letters, note that the small letters is greater than

the capital letters.

Converting into Binary Tree

 a

 b

 c J

 d I

 e k K

 L M

The son on the left

The brother on the right

Ex1:

 a a

 b c d b

 e f c

 general tree binary tree e d

 f

 No. of Links are equal.

 No of levels increased.

 Degree of tree increased by increasing the number of sons in that tree.

Ex2:

 a g

 a

 b J

 d I K

 k L e

 c M

Algorithm Design and Analysis 2018

31

 h j h

 i k i j

 L M N k

 Tree of 3 levels L

 M

